Aufgabengruppe B: Lineare Algebra und Analytische Geometrie

BI

- BE 1.0 In einem kartesischen Koordinatensystem des IR³ mit dem Ursprung O sind die Punkte A(0; 1; -2), B(-1; 2; -0,5), C(2; 0; -4) und D_k(11 + k; 6 + k; k) mit k ∈ IR sowie die Ebene F: 2x₁ x₂ 2x₃ 3 = 0 gegeben.
- 4 1.1 Stellen Sie jeweils eine Gleichung der Ebene E durch die Punkte A, B und C in Parameter- und in Normalenform auf.

[Mögliches Teilergebnis: E: $x_1 - 2x_2 + 2x_3 + 6 = 0$]

- 2 1.2 Zeigen Sie, dass die Punkte D_k auf einer Geraden g liegen, und bestimmen Sie eine Gleichung dieser Geraden.
- 3 1.3 Bestimmen Sie k so, dass der Punkt D_k in der Ebene E liegt, und geben Sie die Koordinaten des Punktes D_k an.
- 4 1.4 Ermitteln Sie eine Gleichung der Schnittgeraden s der beiden Ebenen E und F.
 - 1.5 Der Punkt D* ist Spiegelpunkt des Punktes D₋₅(6; 1; -5) bezüglich der Ebene F. Bestimmen Sie die Koordinaten des Punktes D*.
 - 2.0 Gegeben ist folgendes lineares Gleichungssystem mit t ∈ IR:
 - 1) $2 \cdot x_1 x_2 2 \cdot x_3 + 9.5 = t$
 - II) $x_1 2 \cdot x_2 + 2 \cdot x_3 + 6 = 0$
 - III) $t \cdot (x_1 + x_2) 6 \cdot x_3 + 3 = 0$
- 8 2.1 Ermitteln Sie die Anzahl der Lösungen dieses Gleichungssystems in Abhängigkeit von t.
- 4 2.2 Interpretieren Sie die gegebenen Gleichungen als Ebenengleichungen und bestimmen Sie für t₀ = 1,5 die Schnittmenge der drei Ebenen.

5